If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10=106
We move all terms to the left:
2x^2+10-(106)=0
We add all the numbers together, and all the variables
2x^2-96=0
a = 2; b = 0; c = -96;
Δ = b2-4ac
Δ = 02-4·2·(-96)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*2}=\frac{0-16\sqrt{3}}{4} =-\frac{16\sqrt{3}}{4} =-4\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*2}=\frac{0+16\sqrt{3}}{4} =\frac{16\sqrt{3}}{4} =4\sqrt{3} $
| 2(3x+5)=2(2x-3)+x | | 2m^2+59m-30=0 | | 2n-2n+3n-1=20 | | 910=5(x+19) | | 3(x+5)=7(x+4) | | 5x-2x-2=1 | | 10+2n=4n-2 | | 2c-2c+c-1=11 | | 10+6n=4-2n | | 2c+4c-6c+5c=10 | | 9j+2j-4j=7 | | 9j+2j−4j=7j=0j=4j=2j=1 | | 6x-4(2x+2)=4x | | 3^12x=81^2x-4 | | a−a+4a−3a=10a=9a=13a=3a=10 | | u-u+u-u+4u=16 | | u−u+u−u+4u=16 | | 0.5*t7/8=5 | | 5(0)+9y=10 | | 5=2x+7=13 | | 86=4/5x-10 | | 4j−j=18 | | 2b+2b=4 | | 4(x+3)=6(x-1)x= | | x-7/4=-16 | | 13/18=p/10 | | (x+9)*3=179.50 | | -11x-17=-105 | | X+10/3=2x | | (4x-24.6)=x+11.3 | | 4(2x-5)=148 | | -4(x+1)=x+6 |